
Eulerian and Hamiltonian Cycles in Cayley Graphs

Michael Cavaliere

April 22, 2023



Contents

1 Introduction 1

2 Introduction to Cayley Graphs 1

2.1 Generating Sets and Group Presentations . . . . . . . . . . . . . . . . . 1

2.2 Graph Theoretic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Definition and Properties of Cayley Graphs . . . . . . . . . . . . . . . . 6

2.4 Minimal Generating Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Cycles in Cayley Graphs 19

3.1 Eulerian Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Eulerian Cycles in Cayley Graphs . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Hamiltonian Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Hamiltonian Paths and Cycles in Cayley Graphs . . . . . . . . . . . . . 25

3.5 Hamiltonian Cycles in the Underlying Graphs of Cayley Graphs . . . . 30

4 Conclusion 32



1

1 Introduction

Groups are a fundamental area of study in mathematics, in part due to their versatility;
whilst they can be studied as purely algebraic objects, groups can also be endowed
with additional structure and viewed from the perspective of a vastly different area of
mathematics. One such structure that can be given to a group is that of a graph, where
the relationships between the elements and the generators of a group can be encoded as
vertices and edges respectively. These graphs are called Cayley graphs, and are one of
the main objects of study in geometric group theory.

Firstly, I will introduce the group theoretic and graph theoretic background needed
start studying Cayley graphs. This will allow me to state and prove some key properties
of them. After a brief aside exploring the idea of a minimal generating set, I will move
to considering cycles in Cayley graphs; this will include Eulerian cycles, for which I
provide a full characterisation of the Cayley graphs which admit them, and Hamiltonian
cycles, which are significantly more challenging to characterise and are a current area of
research. Finally, I will outline some of the active areas of research relating to Cayley
graphs.

2 Introduction to Cayley Graphs

2.1 Generating Sets and Group Presentations

Central to the study of Cayley graphs is the idea of a generating set for a group, as
given in the abstract algebra courses [11] and [20].

Definition 2.1.1 Word
For a group G with X ⊂ G, a word in X is an expression of the form

n∏
i=1

xεii

where x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {±1}.

Definition 2.1.2 Reduced Form
For a group G with X ⊂ G, a word in X is in reduced form if every pair xx−1 or
x−1x has been replaced by the identity element.

By convention, the identity element is represented by the empty word, so every pair
xx−1 or x−1x is removed from the word. Note that this does not change the group
element it represents.

Definition 2.1.3 Subgroup Generated by a Subset
For a group G with X ⊂ G, the subgroup generated by X, denoted 〈X〉, is the
subgroup consisting of all possible words in X.

It is clear that 〈X〉 is a subgroup of G from the definition, as it consists of all finite
products of elements in X and their inverses.

Definition 2.1.4 Generating Set
For a group G, X ⊂ G is a generating set of G if G = 〈X〉.
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If a group has a finite generating set, then it is called finitely generated. In particular,
every finite group is finitely generated, as the generating set can be taken to be the whole
group, but not every finitely generated group is finite; for example, the additive group
of the integers has {1} or {a, b} for coprime integers a and b, by Bézout’s lemma, as
possible generating sets.

A generalisation of this counterexample is a family of finitely generated infinite
groups called free groups [6, p. 215].

Definition 2.1.5 Free Group
For a set X, the free group F (X) generated by a set X is the group consisting of all
reduced words in X with concatenation of words followed by reduction as the binary
operation.

The intuition behind this definition is that a free group is a group where there are
no relations between any of the generators. It is clear from the definition that F (X) is
indeed a group, and that a non-trivial finite group cannot be free as the non-identity
elements of X must have infinite order.

The additive group of the integers is a free group of rank one, where the rank of a
free group is the minimal cardinality of a generating set for the group [6, p. 218]. This
generating set with minimum cardinality is called the free generating set of the group.

From the definition of a free group, the definition of a group presentation can be
formalised [6, p. 218].

Definition 2.1.6 Normal Closure
For a group G, the normal closure of X ⊂ G is⋂

X⊂NEG

N

Definition 2.1.7 Group Presentation
A group G has presentation 〈X | R〉, where X ⊂ G and R ⊂ F (X), if G ∼= F (X)/N ,
where N is the normal closure of R.

If G has presentation 〈X | R〉, then X is a generating set for G such that for every
word r ∈ R, r = 1 when r is viewed as an element of G. Typically, the words in
R are rewritten as relations in the presentation of G; for example, Cn = 〈a | an = 1〉,
D2n =

〈
a, b | an = 1, b2 = 1, ba = a−1b

〉
and Dic4n =

〈
a, b | a2n = 1, an = b2, ba = a−1b

〉
are some standard presentations of common families of finite groups.1

Every group has a presentation, as the kernel of the homomorphism φ : F (G) → G
where the restriction to G is the identity map is normal in F (G), and so by the first
isomorphism theorem, F (G)/ ker(φ) ∼= im(φ) = G. The free group F (X) ∼= F (X)/{1}
must have presentation 〈X | ∅〉, and this is generally notated as 〈X | 〉. This fits with
the intuition of the free group having no relations between its generators.

However, not every group has a finite presentation, where both the generating set X
and the set of relations R are finite; finite groups always have a finite presentation, as
the whole group can be taken as the generating set with at most |G|2 relations, as every
possible product can be taken as a relation.

1The dicyclic group Dic8 is more commonly known as the quaternion group Q8.
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2.2 Graph Theoretic Definitions

Before stating the definition of a Cayley graph, I first review some basic graph theoretic
definitions, as stated in the combinatorics course [18].2

Definition 2.2.1 Graph
A graph (V,E) consists of a set of vertices V and a set of edges E such that every
edge is given by the unordered pair {u, v} for some u, v ∈ V .

A subgraph of a graph (V,E) is a graph (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E,
where V ′ must contain all endpoints of edges in E′. A spanning subgraph is a subgraph
containing all the vertices of the original graph.

Definition 2.2.2 Degree
For a graph (V,E), the degree of a vertex v ∈ V , denoted deg v, is the number of
edges e ∈ E such that v ∈ e.

Definition 2.2.3 Paths and Cycles
For a graph (V,E), a path between vertices u, v ∈ V is a sequence {e0, e1, . . . , en} ⊂
E such that ei = {wi, wi+1} for i ∈ [0, n] with w0 = u, wn+1 = v and i 6= j =⇒
wi 6= wj for i, j ∈ [1, n]. A cycle is a path where u = v.

A graph containing at least one cycle is called cyclic, and a graph with no cycles is
called acyclic.

Definition 2.2.4 Connected
A graph (V,E) is connected if ∀u, v ∈ V , there is a path between u and v.

A subgraph is a connected component if it is connected and is not a subgraph of any
larger connected subgraph.

Definition 2.2.5 Tree
A graph Γ is a tree if it is connected and acyclic.

The definition of a graph can be adapted to allow for directed graphs, which can
encode additional information about relationships between vertices and edges, as in the
following definitions adapted from [9, pp. 2–11]:

Definition 2.2.6 Directed Graph
A directed graph (V,E) consists of a set of vertices V and a set of edges E such that
every edge is given by the ordered pair (u, v) for some u, v ∈ V .

In practice, rather than a purely directed graph, I will consider a mixed graph where
an undirected edge {u, v} will be used in the graph if (u, v), (v, u) ∈ E. This simplifies
the presentation of the graph and is the convention when considering Cayley graphs [15,
p. 21].

For a directed edge (u, v), the vertex u is the tail of (u, v) and the vertex v is the
head of (u, v).

2The definition of a graph used here is that of a simple graph; this differs from a multigraph, which
allows for multiple edges between the same pair of vertices and loops connecting vertices to themselves.
Similarly, directed graphs are assumed to be simple, with no multiple edges between the same vertices
with the same direction or loops.
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Definition 2.2.7 Underlying Graph
The underlying graph of a directed graph (V,E) is the undirected graph (V,E′) such
that E′ = {{u, v} : (u, v) ∈ E}.

The concept of the degree of a vertex can be adapted for directed graphs by con-
sidering the in-degree and out-degree, which characterises the incoming and outgoing
directed edges for a vertex.

Definition 2.2.8 In-Degree and Out-Degree
For a directed graph (V,E), the in-degree of a vertex v ∈ V , denoted deg− v, is the
number of edges e ∈ E such that e = (u, v) for some u ∈ V . The out-degree of a
vertex v ∈ V , denoted deg+ v, is the number of edges e ∈ E such that e = (v, u) for
some u ∈ V .

Similarly, the notion of connectivity can be extended to directed graphs, using the
following definitions given in [9, pp. 57–58].

Definition 2.2.9 Weakly Connected
A directed graph is weakly connected if its underlying graph is connected.

Definition 2.2.10 Paths and Cycles in Directed Graphs
For a directed graph (V,E), a path between vertices u, v ∈ V is a sequence
{e0, e1, . . . , en} ⊂ E such that ei = (wi, wi+1) for i ∈ [0, n] with w0 = u, wn+1 = v
and i 6= j =⇒ wi 6= wj for i, j ∈ [1, n]. A cycle is a path where u = v.

As in the undirected case, a directed graph containing at least one cycle is called
cyclic, and a directed graph with no cycles is called acyclic. The definition of a tree
extends to directed graphs, where a directed graph is a tree if its underlying graph is a
tree. This is a stronger condition than simply being acyclic, as an acyclic directed graph
could have a cyclic underlying graph as cycles in directed graphs are directed.

In a similar way, there is a stronger notion of connectivity in directed graphs:

Definition 2.2.11 Strongly Connected
A directed graph (V,E) is strongly connected if ∀u, v ∈ V , there is a path from u to
v and a path from v to u.

The definition of connected components generalises to weakly connected components
and strongly connected components in directed graphs.

It is clear from the definition that a directed graph being strongly connected implies
that it is weakly connected, but that the two concepts are not equivalent.

The Cartesian product on sets can be generalised to the Cartesian product of graphs,
as given in [9, pp. 105–106].3

Definition 2.2.12 Cartesian Product
The Cartesian product of two (directed) graphs Γ = (V1, E1) and Γ′ = (V2, E2) is
the graph Γ× Γ′ = (V1 × V2, E), where

E = {((u, v), (u,w)) : u ∈ V1, (v, w) ∈ E2} ∪ {((u,w), (v, w)) : w ∈ V2, (u, v) ∈ E2}
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34
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(a) The directed cycle graph on five vertices.

1 2 3

(b) The directed path graph on three vertices.

(1, 1)

(2, 1)

(3, 1)(4, 1)

(5, 1)

(1, 2)

(2, 2)

(3, 2)(4, 2)

(5, 2)

(1, 3)

(2, 3)

(3, 3)(4, 2)

(5, 3)

(c) The Cartesian product of the two directed graphs.

Figure 1: The Cartesian product of a directed cycle and a directed path, with the
component factors highlighted in blue and red respectively.

Whilst the definition may seem unintuitive, when visualised, the Cartesian product
of graphs is a natural definition, as seen in Figure 1.4

The idea of a graph isomorphism can also be defined for both undirected and directed
graphs, with the two definitions being analogous [9, p. 65].

Definition 2.2.13 Isomorphic
Two (directed) graphs (V1, E1) and (V2, E2) have an isomorphism φ : V1 → V2
between them if φ is a bijection such that (u, v) ∈ E1 ⇐⇒ (φ(u), φ(v)) ∈ E2. Then,
(V1, E1) and (V2, E2) are isomorphic with (V1, E1) ∼= (V2, E2).

Isomorphisms V → V for a directed graph Γ = (V,E) are known as automorphisms
and the set of all automorphisms on Γ is notated as Aut(Γ). The set of automorphisms
of a graph can be thought of as the set of all symmetries of the graph, and this gives a
group with respect to composition of functions.

Proposition 2.2.14
For a (directed) graph Γ, Aut(Γ) is a group with composition of functions.

Proof. Let Γ = (V,E). For any φ, ψ ∈ Aut(Γ), φ : V → V and ψ : V → V are both
bijections so ψ ◦φ : V → V is a bijection. As φ and ψ are isomorphisms, (u, v) ∈ E ⇐⇒
(φ(u), φ(v)) ∈ E ⇐⇒ (ψ(φ(u)), ψ(φ(v))) ∈ E, so ψ ◦ φ ∈ Aut(Γ) and hence ◦ is a
binary operation on Aut(Γ).

The map I : V → V where v 7→ v is clearly an automorphism, so I ∈ Aut(Γ). Since
for φ ∈ Aut(Γ), I ◦ φ = φ ◦ I = φ by definition, I is an identity element for Aut(Γ).

3All the following definitions and results regarding directed graphs also hold in the undirected case
with very similar proofs.

4Often, the Cartesian product of graphs Γ and Γ′ is denoted Γ�Γ′ and referred to as the graph box
product to avoid confusion with the graph tensor product. However, in this essay the tensor product
will not be used so Γ× Γ′ is used unambiguously.
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For φ ∈ Aut(Γ), as φ is a bijection, φ−1 exists and is a bijection. As (u, v) ∈
E ⇐⇒ (φ(u), φ(v)) ∈ E, by definition of an inverse function,

(
φ−1(u), φ−1(v)

)
∈

E ⇐⇒ (u, v) ∈ E, so φ−1 ∈ Aut(Γ).
For any φ, ψ, π ∈ Aut(Γ), φ ◦ (ψ ◦ π) = (φ ◦ ψ) ◦ π by definition of composition of

functions, so associativity holds.
Hence, Aut(Γ) is a group with composition of functions.

The automorphism group of a directed graph can be used to characterise certain
graphs, including a useful property of Cayley graphs using the following definition [8,
p. 33]:

Definition 2.2.15 Vertex Transitive
A (directed) graph Γ = (V,E) is vertex transitive if its automorphism group Aut(Γ)
acts transitively on its vertices.

An intuitive description of a directed graph that is vertex transitive is that it is a
graph where structurally there is no way to differentiate the vertices of the graph from
each other if they are unlabelled, as for the action to be transitive - meaning it has only
one orbit - there must be for all vertices u, v ∈ V some φ ∈ Aut(Γ) such that φ(u) = v.

2.3 Definition and Properties of Cayley Graphs

Cayley graphs are a representation of the structure of a group inspired by the following
famous theorem in group theory [15, p. 4, 19–20]:

Theorem 2.3.1 Cayley’s Theorem
Every group G is isomorphic to a subgroup of the symmetric group Sym(G).

Proof. Consider the operation · : G × G → G defined by g · x = gx. Clearly 1 · x = x
and g · (h · x) = g · (hx) = (gh)x = (gh) · x, so · is an action.

As · is an action, the map φ : G→ Sym(G), where φ(g) is the function x 7→ g · x, is
a homomorphism. Since g · x = x ⇐⇒ g = 1, · is faithful and so G/ ker(φ) ∼= G. By
the first isomorphism theorem, this implies that G ∼= im(φ) ≤ Sym(G).

Cayley’s Theorem shows that every group can be represented by a group of permuta-
tions of its elements. This result can be extended to show that every group is isomorphic
to a subgroup of the symmetry group of a particular directed graph.

Corollary 2.3.2
Every group G is isomorphic to a subgroup of the automorphism group Aut(Γ) for
a directed graph Γ with vertex set equal to G.

Proof. For X ⊂ G, consider the directed graph ΓG,X with vertex set G and edge set
E = {(g, gx) : g ∈ G, x ∈ X}. Since G acts on itself by left multiplication, · : G×E → E
defined by h · (g, gx) = (hg, hgx) is an action.

Note that (g, gx) 7→ h · (g, gx) is in Aut(ΓG,X) by the cancellation law, as (g, k) ∈
E ⇐⇒ k = gx ⇐⇒ hk = hgx ⇐⇒ (hg, hk) ∈ E for g, h, k ∈ G and x ∈ X.

As · is an action, the map φ : G→ Aut(ΓG,X), where φ(h) is the function (g, gx) 7→
h·(g, gx), is a homomorphism. Since h·(g, gx) = (g, gx) ⇐⇒ h = 1 as left multiplication
is a faithful action, · is faithful and so G/ ker(φ) ∼= G. By the first isomorphism theorem,
this implies that G ∼= im(φ) ≤ Aut(ΓG,X).
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This shows that every group can be represented by a group of permutations of a
directed graph with vertex set equal to the group. This graph is known as a Cayley
graph of the group [15, p. 21].

Definition 2.3.3 Cayley Graph
For a group G and X ⊂ G, the Cayley graph of G with respect to X is the directed
graph Cay(G,X) with vertex set equal to G and edge set {(g, gx) : g ∈ G, x ∈ X}.

When discussing Cayley graphs, an edge (g, gx) is said to be generated by x ∈ X.
When drawn out, Cayley graphs are often edge-coloured, where each edge is coloured
based on its generator.

As I am only considering simple graphs, X is assumed throughout to be a proper
subset of G with 1 /∈ X. Furthermore, as mentioned above, Cayley graphs are typically
mixed graphs rather than purely directed, where an undirected edge is used if (g, gx)
and (gx, g) are both edges generated by the same element; that is, when |x| = 2.

Many authors choose to define Cayley graphs as requiring a generating set rather
than any subset of the group, but as seen in Figure 2, any subset of the group can
be used. The following two results, which are generalisations of a result stated in [21,
p. 132] for finite groups without proof, justify this convention.

Proposition 2.3.4
For a group G and X ⊂ G, Cay(G,X) is weakly connected if and only if G = 〈X〉.

Proof. Suppose that Cay(G,X) is weakly connected. By definition, this means there is
a path between h and g in the underlying graph for any g, h ∈ G. In particular, this
holds for all g ∈ G and h ∈ X. By definition of a Cayley graph, every edge in the
underlying graph is of the form {k, kx} for some k ∈ G and x ∈ X. This implies, using
the definition of a path, that there is some x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {±1} such
that

g = h

n∏
i=1

xεii

As h ∈ X, this implies that g ∈ 〈X〉, and hence G = 〈X〉.
Suppose that G = 〈X〉. For any g, h ∈ G, g−1h ∈ G so there is some x1, . . . , xn ∈ X

such that

g−1h =

n∏
i=1

xεii ⇐⇒ h = g

n∏
i=1

xεii

where ε1, . . . , εn ∈ {±1}. By definition of a Cayley graph, every edge in the underlying
graph is of the form {k, kx} for some k ∈ G and x ∈ X, so this product describes a path
in the underlying graph between g and h. Since this holds for any g, h ∈ G, this implies
that Cay(G,X) is weakly connected.

Corollary 2.3.5
For a group G and X ⊂ G where every element of X has finite order, if Cay(G,X)
is weakly connected, then Cay(G,X) is strongly connected.

Proof. By Proposition 2.3.4, G = 〈X〉. For any g, h ∈ G, g−1h ∈ G so there is some
x1, . . . , xn ∈ X such that

g−1h =

n∏
i=1

xεii ⇐⇒ h = g

n∏
i=1

xεii
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where ε1, . . . , εn ∈ {±1}. Since every xi ∈ X has finite order ni,

h = g

n∏
i=1

xkii

where ki ∈ {0, . . . , ni − 1} by taking ki ≡ εi (mod ni). This means that h can be
written as a product of g and a product of elements of X.

By definition of a Cayley graph, every edge is of the form (k, kx) for some k ∈ G and
x ∈ X, so this product describes a path from g to h. Since this holds for any g, h ∈ G,
this implies that Cay(G,X) is strongly connected.

1

a2a4

a

a3a5

b

a4ba2b

ab

a5ba3b

Figure 2: The Cayley graph Cay
(
Dic12,

{
a2
})

with respect to a non-generating subset.

This shows that Cayley graphs generated by a generating set for the group are exactly
those which are weakly connected. For sets where the elements have finite order, the
Cayley graphs generated by a generating set for the group are exactly those which are
strongly connected.

The notion of connectivity in Cayley graphs can be extended to considering the
connected components of Cay(G,X) where G 6= 〈X〉, which represent the cosets with
respect to 〈X〉, as seen in the following result from [21, p. 134].

Proposition 2.3.6
For a group G with g, h ∈ G and X ⊂ G, g and h are in the same coset of 〈X〉
in G if and only if g and h are vertices in the same weakly connected component of
Cay(G,X).

Proof. Suppose that g, h ∈ k〈X〉 for some k ∈ G. Then, g = kxε11 . . . xεnn and h =
kyµ1

1 . . . yµm
m for some x1, . . . , xn, y1, . . . , ym ∈ X and ε1, . . . , εn, µ1, . . . , µm ∈ {±1}.

Hence,

g−1h = x−εnn . . . x−ε11 k−1kyµ1

1 . . . yµm
m

= x−εnn . . . x−ε11 yµ1

1 . . . yµm
m

=⇒ h = gx−εnn . . . x−ε11 yµ1

1 . . . yµm
m

By definition of a Cayley graph, every edge in the underlying graph is of the form {a, ax}
for some a ∈ G and x ∈ X, so this product describes a path in the underlying graph
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between g and h. Hence, every element in the coset k〈X〉 belongs to a weakly connected
component.

Suppose that g, h ∈ G belong to the same weakly connected component of Cay(G,X)
and that h ∈ k〈X〉 for some k ∈ G. By definition, this means there is a path between h
and g in the underlying graph for any g, h ∈ G. In particular, this holds for all g ∈ G
and h ∈ X. By definition of a Cayley graph, every edge in the underlying graph is of
the form {a, ax} for some a ∈ G and x ∈ X. This implies, using the definition of a path,
that there is some x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {±1} such that

g = h

n∏
i=1

xεii

As h ∈ k〈X〉, this implies that g ∈ k〈X〉.

The results regarding connectivity in Cayley graphs with respect to generating sets
can then be used to prove the following corollary:

Corollary 2.3.7
For a group G with g, h ∈ G and X ⊂ G where every element of X has finite order,
g and h are in the same coset of 〈X〉 in G if and only if g and h are vertices in the
same strongly connected component of Cay(G,X).

Proof. By Proposition 2.3.6, g and h are in the same coset of 〈X〉 if and only if g and h
are vertices in the same weakly connected component of Cay(G,X). Hence, each weakly
connected component of Cay(G,X) can be considered as the graph Cay(〈X〉, X) up to
relabelling of vertices. By Corollary 2.3.5, Cay(〈X〉, X) is therefore strongly connected,
and so g and h are in the same coset of 〈X〉 if and only if g and h are vertices in the
same strongly connected component of Cay(G,X).

The definition of a Cayley graph does allow for infinite groups and infinite generating
sets; for example, Figure 3 shows the Cayley graph of the free group of rank one and
the free group of rank two with respect to their free generating sets.

It follows from the definition of a Cayley graph that cycles represent the relations
satisfied by the generators of the graph. Based on this, I propose and prove the following
characterisation of Cayley graphs:5

Proposition 2.3.8
For a group G with G = 〈X〉 and |G| > 2, Cay(G,X) is a tree if and only if
G ∼= F (X).

Proof. Suppose that Cay(G,X) has a cycle C = {{g0, g1}, . . . , {gn−1, gn}} in its un-
derlying graph, where g0 = gn. By definition of a Cayley graph, every edge in the
underlying graph is of the form {g, gx} for some g ∈ G and x ∈ X, so

gn = g0

n∏
i=1

xεii ⇐⇒
n∏
i=1

xεii = 1

for some x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {±1}. This implies that G has presentation
〈X | R〉 where x1 . . . xn ∈ R ⊂ F (X). Hence, R 6= ∅ and so G 6∼= F (X).

5Note that |G| = 2 ⇐⇒ G ∼= C2 and so the Cayley graph of G with respect to the only possible
generating set has two vertices and one undirected edge between them as the single generator has order
two, so it is a tree. When |G| = 1, G ∼= {1} ∼= F ({1}) and the Cayley graph has one vertex and no
edges since the generating set of a Cayley graph cannot contain the identity, so it is a tree.
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1

a

b

a−1

b−1

a2

ab

ba

b2

ba−1

a−1b

a−2

a−1b−1

b−1a−1

b−2

b−1a

ab−1

(b) The Cayley graph Cay(F ({a, b}), {a, b})

Figure 3: Cayley graphs of the free groups of rank one and rank two with respect to
their free generating sets.

Suppose that G is not a free group. Then, G has presentation 〈X | R〉 where R 6= ∅.
For r ∈ R, since r is a word in X,

r =

n∏
i=1

xεii ⇐⇒ gr = g

n∏
i=1

xεii

for some x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {±1}. By definition of a Cayley graph, every
edge in the underlying graph is of the form {g, gx} for some g ∈ G and x ∈ X, so this
product describes a cycle in the underlying graph of Cay(G,X), so the graph is not a
tree.

It follows from this that Cayley graphs generated by elements with finite order must
be cyclic.

Corollary 2.3.9
For a group G with G = 〈X〉 and |G| > 2, if every element of X has finite order,
then Cay(G,X) is cyclic.

Proof. By Proposition 2.3.8, the underlying graph of Cay(G,X) is cyclic. Consider
a cycle C = {{g0, g1}, . . . , {gn−1, gn}} in the underlying graph, where g0 = gn. By
definition of a Cayley graph, every edge in the underlying graph is of the form {g, gx}
for some g ∈ G and x ∈ X, so

gn = g0

n∏
i=1

xεii
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for some x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {±1}. Since each element xi ∈ X has finite
order ni,

gn = g0

n∏
i=1

xkii

where ki ∈ {0, . . . , ni − 1} by taking ki ≡ εi (mod ni). This means that gn can be
written as a product of g0 and a product of elements of X, which corresponds to a path
from g0 to gn = g0, and hence a cycle in the directed graph Cay(G,X).

In practice, most study of Cayley graphs concerns finite groups, including this essay.
When working with finite groups, Cayley graphs with respect to any generating set are
strongly connected and cyclic, as every element in a group with finite order must have
finite order.

Just as the direct product of groups can be used to construct new groups, the Carte-
sian product of Cayley graphs can be used to construct new Cayley graphs, as is imme-
diate from the definitions.

Proposition 2.3.10
If G and H are groups with G = 〈X〉 and H = 〈Y 〉, then Z = (X × {1})∪ ({1} × Y )
is a generating set for G×H and Cay(G×H,Z) ∼= Cay(G,X)× Cay(H,Y ).

Proof. For any (g, h) ∈ G × H, (g, 1) ∈ 〈X × {1}〉 and (1, h) ∈ 〈Y × {1}〉. Since
(g, h) = (g, 1)(1, h), any element of G ×H can be written as the product of a word in
X × {1} and a word in {1} × Y . Hence, G×H = 〈(X × {1}) ∪ ({1} × Y )〉.

By definition of the direct product of groups, the vertex set of Cay(G×H,Z) is
V = {(g, h) : g ∈ G, h ∈ H} and the edge set of Cay(G×H,Z) is

E = {((g, h), (gx, h)) : g ∈ G, h ∈ H,x ∈ X} ∪ {((g, h), (g, hy)) : g ∈ G, h ∈ H, y ∈ Y }

This is precisely the definition of the vertex and edge sets of Cay(G,X) × Cay(H,Y ),
by definition of the Cartesian product of graphs.

The Cayley graph of a group is not unique; different generating sets for a given
group will produce different Cayley graphs. For example, in Figure 4, it is clear that
Cay(Dic12, {a, b}) has a cycle of length 6 but Cay

(
Dic12,

{
a2, ab

})
does not. This is why

specifying the generating set for a given Cayley graph is crucial.
Furthermore, although Proposition 2.3.10 shows that Cayley graphs of direct prod-

ucts of groups can be constructed using the Cartesian product, not every Cayley graph
of a direct product of groups G × H will be isomorphic to some Cartesian product of
Cayley graphs of G and H. For example, C2 × C3

∼= C6 and so Cay(C2 × C3, {(a, b)})
is a connected Cayley graph for C2 = 〈a〉 and C3 = 〈b〉, but it is not isomorphic to any
Cartesian product of Cayley graphs of C2 and C3.

The following result is taken from [8, p. 35] and gives another important property of
Cayley graphs.

Theorem 2.3.11
For a group G and X ⊂ G, Cay(G,X) is vertex transitive.

Proof. As shown in Corollary 2.3.2, φ(g) : G→ G defined by x 7→ gx is an automorphism
of Cay(G,X). The set {φ(g) : g ∈ G} is a subgroup of Aut(Γ) as it contains the identity

map and for all g, h ∈ G, (φ(h))
−1◦φ(g) = φ

(
h−1

)
◦φ(g) = φ

(
h−1g

)
so (φ(h))

−1◦φ(g) ∈
Aut(Γ). This subgroup acts transitively on G as for all g, h ∈ G,

(
φ
(
g−1h

))
(g) =

g
(
g−1h

)
= h. Hence, Cay(G,X) is vertex transitive.
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a5

1

a

a2

a3

a4

b

ab

a2b

a3b

a4b

a5b

(a) Cay(Dic12, {a, b})

a3
a4b

1
ab

a4

a5

a5b

a3b

a

a2

a2b

b

(b) Cay
(
Dic12,

{
a2, ab

})
Figure 4: Cayley graphs of Dic12 with respect to different generating sets.

Although all Cayley graphs are vertex transitive, not all vertex transitive graphs are
Cayley graphs for some group. For example, the Petersen graph P is vertex transitive
but cannot be a Cayley graph for any group [8, p. 35]. I prove this result using the
Kneser graph labelling of P , where every vertex is labelled by a two-element subset of
{1, . . . , 5} such that vertices are connected by an edge if and only if their labels are
disjoint.

{3, 4}

{4, 5}

{1, 5}{1, 2}

{2, 3}

{2, 5}

{1, 3}

{2, 4}{3, 5}

{1, 4}

Figure 5: The Petersen graph depicted using its Kneser graph labelling.

Proposition 2.3.12
The Petersen graph P is vertex transitive but not a Cayley graph.

Proof. P is vertex transitive as, using the Kneser graph labelling of the vertices given
in Figure 5, any permutation in S5 induces a permutation of the vertices with {a, b} ∩
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{c, d} = ∅ ⇐⇒ {σ(a), σ(b)} ∩ {σ(c), σ(d)} = ∅ for σ ∈ S5, so S5 ≤ Aut(P ), which
implies that P is vertex transitive.

As all groups of order 10 are isomorphic to either C10 or D10, if P = Cay(G,X),
then G ∼= C10 or G ∼= D10. As all vertices of P have degree 3, X = {x, y} ⊂ G
where |x| = 2 and |y| > 2. If G ∼= C10, then G is abelian and so xy−1xy = 1. This
implies that xy−1xy gives a cycle of length 4 in the underlying graph of Cay(G,X),
but P has no such cycles. If G ∼= D10, then |y| = 5 by Lagrange’s theorem. As

D10 =
〈
x, y | y5 = 1, x2 = 1, xy = y−1x

〉
, (xy)

2
= 1 and so there is again a cycle of

length 4 in Cay(G,X). As these are the only two options for a group of order 10, P
cannot be a Cayley graph.

1

a2

a4a6

a8

a5

a7

a9a

a3

(a) Cay
(
C10,

{
a2, a5

})

b

ab

a2ba3b

a4b

1

a

a2a3

a4

(b) Cay(D10, {a, b})

Figure 6: Examples of Cayley graphs of groups with order ten for generating sets of size
two and one generator of order two.

Vertex transitivity provides a stronger characterisation of exactly which directed
graphs are Cayley graphs. The following theorem is taken from [17, p. 802], although
the proof has been omitted from this essay.

Theorem 2.3.13 Sabidussi’s Theorem
An unlabelled directed graph Γ = (V,E) is isomorphic to a Cayley graph Cay(G,X)
for some X ⊂ G if and only if there is some H ≤ Aut(Γ) such that |H| = |V | and
H acts transitively on V . In this case, G ∼= H.

2.4 Minimal Generating Sets

The following definition is taken from [10, p. 355]:

Definition 2.4.1 Minimal Generating Set
For a group G, a minimal generating set is X ⊂ G such that no proper subset of X
is a generating set of G.

Note that a group can have multiple minimal generating sets of different cardinalities;
for example, considering again the additive group of the integers, both the generating
sets {1} and {2, 3} would be minimal. This is not unique to infinite groups; in fact,
most groups have minimal generating sets of different cardinalities. For example, the
cyclic group C10 =

〈
a | a10 = 1

〉
has both {a} and

{
a2, a5

}
as minimal generating sets.

The maximal cardinality of a minimal generating set for a group G is denoted m(G)
and the minimal cardinality is denoted d(G). If a group is finite, then there exists a
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minimal generating set of minimal cardinality; for infinite groups, minimal generating
sets are either finite or of the same cardinality as the group [10, p. 356].

A result from universal algebra provides a surprising insight into the phenomenon
of minimal generating sets having different cardinalities. Although the result is stated
in a more general form in [3, p. 33], which applies to minimal generating sets for all
sets with n-ary closure operators for n ≥ 2, this has been adapted here to address the
specific case of finitely generated groups.

Theorem 2.4.2 Tarkski’s Irredundant Basis Theorem
For a finite group G, for any n ∈ N such that d(G) ≤ n ≤ m(G), G has a minimal
generating set X such that |X| = n.

This shows that not only do many groups have minimal generating sets of different
cardinalities, but that finite groups must have at least one minimal generating set of
every size between d(G) and m(G).

In light of the difficulty of finding all the minimal generating sets of a given group,
many of the results surrounding minimal generating sets of groups instead focus on
bounding the cardinalities of such sets, and in particular there are several existing results
regarding d(G). For example, the following result for direct products of finite groups
follows directly from the definition of d(G×H).

Lemma 2.4.3
For a finite group G×H, max{d(G), d(H)} ≤ d(G×H) ≤ d(G) + d(H).

Proof. If G×H = 〈X〉, then G = 〈φ(X)〉 where φ : G×H → G is the canonical surjective
homomorphism (g, h) 7→ g. This implies that |X| ≥ d(G). By the same argument using
φ : G×H → H, |X| ≥ d(H) and hence d(G×H) ≥ max{d(G), d(H)}.

If G = 〈XG | RG〉 and H = 〈XH | RH〉 for minimal generating sets XG and XH with
|XG| = d(G) and |XH | = d(H), then G×H = 〈XG ∪XH | RG ∪RH ∪ [XG, XH ]〉.6 As
|XG ∪XH | ≤ d(G) + d(H), d(G×H) ≤ d(G) + d(H).

A similar result can also be derived for quotient groups.

Lemma 2.4.4
For a finite group G with N E G, d(G/N) ≤ d(G).

Proof. Let d(G) = n and X = {x1, . . . , xn} be a minimal generating set of G. Since
every g ∈ G can be written as a word in X, every gN ∈ G/N can be written as a
product of the cosets {x1N, . . . , xnN}. Hence, d(G/N) ≤ d(G).

Many properties of minimal generating sets seem counter-intuitive; for example,
the minimum cardinality of minimal generating sets does not necessarily preserve sub-
group ordering. For example, by Cayley’s Theorem, every finite group with |G| = n is
isomorphic to a subgroup of Sn, which has minimal generating set {(1, 2), (1, . . . , n)}.
However, there are finite groups with d(G) > 2, as will be seen in Proposition 2.4.10, so
H ≤ G 6=⇒ d(H) ≤ d(G).

There are certain families of finite groups for which it is much easier to determine
the minimal generating sets of; one example of such a family are the finite p-groups,
where d(G) = m(G). This uses the following definition and result, taken from [16,
pp. 122–123].7

6This presentation is stated without proof here, but it can be proved by showing that (g, h) 7→ gh is
an isomorphism from G×H to the group given by the presentation.

7Note that Proposition 2.4.6 holds in the case that G is infinite, but involves invoking Zorn’s lemma
to find a maximal subgroup.



15

Definition 2.4.5 Frattini Subgroup
For a group G, the Frattini subgroup Φ(G) is the intersection of all maximal sub-
groups of G, where H ≤ G is maximal if and only if H ≤ K ≤ G =⇒ K = H or
K = G. If G has no maximal subgroups, then Φ(G) = G.

Proposition 2.4.6
For a finite group G, the Frattini subgroup Φ(G) is the set of all elements g ∈ G
such that there is no minimal generating set of G containing g.

Proof. Suppose that g is not an element of any minimal generating set of G. For a
maximal subgroup H ≤ G, if g /∈ H, then as H ≤ 〈{g} ∪H〉, 〈{g} ∪H〉 = G. As
g cannot be an element of any minimal generating set of G, this implies that H is a
generating set of G and hence H = G, which is a contradiction. As g ∈ H for any
maximal subgroup H, this implies that g ∈ Φ(G).

Suppose that g ∈ Φ(G). If {g}∪X is a minimal generating set of G for some X ⊂ G,
then as G 6= 〈X〉, there must exist a maximal subgroup H ≤ G such that 〈X〉 ≤ H. As
g ∈ H, this implies that 〈{g} ∪X〉 ≤ H, which is a contradiction. Hence, g is not an
element of any minimal generating set of G.

Although the proof will be omitted from this essay, this property of the Frattini
subgroup can be used alongside results about nilpotent groups to prove the following
theorem, which is taken from [16, p. 124]:

Theorem 2.4.7 Burnside Basis Theorem
If G is a finite p-group, then G/Φ(G) is a vector space over Z/pZ and d(G) =
m(G) = dim(G/Φ(G)).

The Burnside Basis Theorem can be used to classify the Cayley graphs of some types
of p-group with respect to minimal generating sets up to isomorphism. I first propose
and prove the following proposition:

Proposition 2.4.8
For a finite group G with G = 〈X | R〉 and Y ⊂ G, if there is a bijection φ : X →
Y such that xε11 . . . xεnn ∈ R ⇐⇒ φ(x1)

ε1 . . . φ(xn)
εn = 1, then Cay(G,X) and

Cay(G, Y ) are isomorphic.

Proof. Consider the map ψ : F (Y )→ G defined by

ψ

(
n∏
i=1

yεii

)
=

n∏
i=1

φ−1(yi)
εi

for y1, . . . , yn ∈ Y and ε1, . . . , εn ∈ {±1}. By definition of F (Y ) and the fact that φ is
a bijection, ψ is well-defined. As

ψ

(
n+k∏
i=1

)
=

n+k∏
i=1

φ−1(yi)
εi

=

n∏
i=1

φ−1(yi)
εi

n+k∏
i=n+1

φ−1(yi)
εi

= ψ

(
n∏
i=1

yεii

)
ψ

(
n+k∏
i=n+1

yεii

)
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ψ is a homomorphism. For every g ∈ G, as

g =

n∏
i=1

xεii

=⇒ g = ψ

(
n∏
i=1

φ(xi)
εi

)

for some x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {±1}, ψ is surjective. Hence, F (Y )/ ker(ψ) ∼=
G by the first isomorphism theorem and so G = 〈Y | ker(ψ)〉. By construction, r ∈
ker(ψ) ⇐⇒ ψ(r) ∈ R.

Let ψ : G→ G be defined as ψ(g) = ψ(yε11 . . . yεnn ) where g = yε11 . . . yεnn . As

ψ(g) = ψ(h)

⇐⇒ ψ

(
n∏
i=1

yεii

)
= ψ

(
n+k∏
i=n+1

y
εn+k

i

)

⇐⇒
n∏
i=1

φ−1(yi)
εi =

n+k∏
i=n+1

φ−1(yi)
εi

⇐⇒
(

n+k∏
i=n+1

φ−1(yi)
εi

)−1 n∏
i=1

φ−1(yi)
εi = 1

⇐⇒
−(n+1)∏
i=−(n+k)

φ−1(yi)
εi

n∏
i=1

φ−1(yi)
εi = 1

⇐⇒
−(n+1)∏
i=−(n+k)

yεii

n∏
i=1

yεii = 1

⇐⇒
(

n+k∏
i=n+1

yεii

)−1 n∏
i=1

yεii = 1

⇐⇒ h−1g = 1

g = h

ψ is injective and hence an automorphism.
Let EX be the edge set of Cay(G,X) and EY the edge set of Cay(G, Y ). Then,

(g, h) ∈ EY ⇐⇒ h = gy for some y ∈ Y
⇐⇒ ψ(h) = ψ(gy)

= ψ(g)ψ(y)

= ψ(g)φ−1(y)

= ψ(g)x for some x ∈ X
⇐⇒

(
ψ(g), ψ(h)

)
∈ EX

Hence, Cay(G,X) and Cay(G, Y ) are isomorphic.

For example, if {a, b} ⊂ D2n is such that |a| = n, |b| = 2 and |ba| = 2, then {a, b}
generates D2n. As seen in Figure 7, this implies that, for example, Cay(D10, {a, b}) and
Cay

(
D10,

{
a3, a4b

})
are isomorphic.
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a2ba3b
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(a) Cay(D10, {a, b})
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ab a2b
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a2 a3

a4

(b) Cay
(
D10,

{
a3, a4b

})
Figure 7: Cayley graphs of the dihedral group D10 with respect to different minimal
generating sets that satisfy the same relations.

Although in the example of D2n, Proposition 2.4.8 implies that any minimal gen-
erating set with the same number of elements and same orders of the elements have
isomorphic Cayley graphs, Figure 8 shows that this does not always hold; both have
a generating set with three order two elements, but Cay(S4, {(1, 2), (2, 3), (3, 4)}) has a
cycle of length 4 where Cay(S4, {(1, 2), (1, 3), (1, 4)}) does not.
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(a) Cay(S4, {(1, 2), (2, 3), (3, 4)})
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34

1234

1432

1243

1342

1324
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(b) Cay(S4, {(1, 2), (1, 3), (1, 4)})

Figure 8: Cayley graphs of the symmetric group S4 with respect to different minimal
generating sets; they are not isomorphic to each other despite both having three order
two generators.

The classification of the Cayley graphs of cyclic p-groups follows directly from this
result:

Proposition 2.4.9
For a group G ∼= Cpn for some prime p and n ∈ N, all Cayley graphs of G with
respect to a minimal generating set of G are isomorphic.

Proof. By the Burnside Basis Theorem, as G is cyclic, the minimal generating sets of
G are all of the form {g} for some g ∈ G where |g| = pn. By Proposition 2.4.8, this
implies that all Cayley graphs of G with respect to a minimal generating set of G are
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isomorphic.

In particular, Proposition 2.4.9 proves that all Cayley graphs of prime order cyclic
groups with respect to minimal generating sets are isomorphic. This can be generalised
to all elementary abelian groups - as defined in [6, p. 136], these are the abelian groups
where every non-trivial element has order p for a given prime p. It follows from Cauchy’s
theorem that an elementary abelian group must be a p-group, and by the fundamental
theorem of finite abelian groups, there is a unique elementary abelian group of order pn

up to isomorphism, namely
∏n
i=1 Cp.

8

Proposition 2.4.10
For an elementary abelian group G, all Cayley graphs of G with respect to a minimal
generating set are isomorphic.

Proof. If G is elementary abelian, then G ∼=
∏n
i=1 Cp where |G| = pn. As G =

〈a1〉 × · · · × 〈ak〉, {(g1, . . . , gk) : gi = ai, gj = 1, i 6= j} is a minimal generating set of
G. By the Burnside Basis Theorem, the minimal generating sets of G all contain n
elements. Since by definition, every non-trivial element of G has order p and G =
〈g1, . . . , gn | gpi = 1, gigj = gjgi〉, every minimal generating set of G must satisfy these
relations and so, by Proposition 2.4.8, all Cayley graphs of G with respect to a minimal
generating set of G are isomorphic.

The classification of all Cayley graphs with respect to minimal generating sets for
arbitrary finite abelian groups is significantly harder, due to the number of minimal
generating sets. The following two results are stated as an exercise in [6, p. 166] to
give d(G) for any abelian group G. They follow from the fundamental theorem of finite
abelian groups and the Burnside Basis Theorem.

Lemma 2.4.11
For a finite abelian group G ∼=

∏k
i=1 Cdi where di | di+1 for i ∈ {1, . . . , k − 1} such

that |G| = d1 . . . dk, if Pj is the Sylow pj-subgroup in G for a prime pj | |G|, then
k = maxpj ||G|{d(Pj)}.

Proof. If p | d1, then p | di for all i ∈ {1, . . . , k}. For each di, as di = pnimi where

p - mi, P ∼=
∏k
i=1 Cpni is a Sylow p-subgroup of G. As G is abelian, every subgroup

of G is normal and so P is the only Sylow p-subgroup of G. As P = 〈g1〉 × · · · × 〈gk〉,
{(p1, . . . , pk) : pi = gi, pj = 1, i 6= j} is a minimal generating set of P . By the Burnside
Basis Theorem, as P is a p-group, this implies that d(P ) = k. This holds for any prime
p | d1. If p | |G| but p - d1, then d(P ) < k, so the result holds.

Proposition 2.4.12
For a finite abelian group G ∼=

∏k
i=1 Cdi where di | di+1 for i ∈ {1, . . . , k − 1} such

that |G| = d1 . . . dk, d(G) = k.

Proof. By Lemma 2.4.3, d(G) ≤ k. Using Lemma 2.4.11, let P be a Sylow p-subgroup of
G with d(P ) = k and let P1, . . . , Pr be the other Sylow pi-subgroups of G corresponding
each prime pi | G where pi 6= p.

Since G is a finite abelian group, every Sylow p-subgroup of G is normal in G
and so G ∼= P × P1 × · · · × Pr ∼= P × ∏r

i=1 Pi. By definition of the direct product,
N =

∏r
i=1 Pi E G and G/N ∼= P . By Lemma 2.4.4, d(P ) = d(G/N) ≤ d(G) and so

d(G) ≥ k. Hence, d(G) = k.

8Often additive notation is used for abelian groups, such as writing
⊕n

i=1 Cp. I have however
generally expressed the cyclic group Cp multiplicatively and I will only use additive notation for abelian
groups where the group operation is a form of addition, such as when considering Z/nZ.
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3 Cycles in Cayley Graphs

3.1 Eulerian Cycles

One of the most famous types of cycle in graph theory are Eulerian cycles, with the
definition revised from the combinatorics course [18].

Definition 3.1.1 Eulerian Cycle
An Eulerian cycle in a finite graph is a cycle that uses every edge exactly once.

Eulerian cycles in directed graphs are defined in the same way, with the key difference
being the stronger condition that the cycle must be directed; hence, not every directed
graph with an Eulerian cycle in its underlying graph will have an Eulerian cycle.

For both undirected and directed graphs, there is a simple characterisation of pre-
cisely which graphs contain Eulerian cycles. This first uses the following lemma, which
was stated in [4, p. 44] without proof.

Lemma 3.1.2
If (V,E) is a finite weakly connected directed graph such that deg−(v) = deg+(v) for
all v ∈ V , then (V,E) is strongly connected.

Proof. Let |V | = 1. Then, vacuously, (V,E) is weakly connected with deg−(v) =
deg+(v) for all v ∈ V , and also strongly connected.

Suppose that ∀|V ′| < n where (V ′, E′) is weakly connected with deg−(v) = deg+(v)
for all v ∈ V ′, (V ′, E′) is strongly connected. If |V | = n, where the directed graph
(V,E) is weakly connected with deg−(v) = deg+(v) for all v ∈ V , then consider a
proper subgraph (V ′, E′) where |V ′| = n − 1. As |V ′| < n, the inductive hypothesis
holds and so (V ′, E′) is strongly connected. By definition, this means that for any
u, v ∈ V ′, there is a path from u to v and a path from v to u.

Consider v ∈ V − V ′. As (V,E) is weakly connected and deg−(v) = deg+(v), there
are edges (u, v), (v, w) ∈ E such that u,w ∈ V ′. For any x ∈ V ′, there is a path from x
to u and a path from w to x. Hence, there is a path from x to v and a path from v to
x, by appending the given edges to these paths. Since V ′ ∪ {v} = V , this implies that
(V,E) is strongly connected by induction.

The proof of the characterisation is then adapted from [2, p. 21]:

Theorem 3.1.3 Euler’s Theorem
A finite directed graph (V,E) has an Eulerian cycle if and only if all vertices v ∈ V
with non-zero degree belong to a single weakly connected component and deg−(v) =
deg+(v).

Proof. Suppose that (V,E) has an Eulerian cycle. Then, every vertex with non-zero
degree must belong to a single weakly connected component, as if u, v ∈ V have non-
zero degree, then there must be a path from u to v in the Eulerian cycle. Furthermore,
for each v ∈ V , deg−(v) = deg+(v) as the number of edges starting at v must equal the
number of edges leaving v for the Eulerian cycle to use every edge.

Suppose that all vertices v ∈ V with non-zero degree belong to a single weakly
connected component and that deg−(v) = deg+(v). By Lemma 3.1.2, this implies that
all vertices with non-zero degree belong to a single strongly connected component.

To construct an Eulerian cycle C in (V,E), take u ∈ V where u has non-zero degree.
There must therefore be some v ∈ V such that (u, v) ∈ E, so append (u, v) to C. Since
deg−(v) = deg+(v), there must be some w ∈ V such that (v, w) ∈ E, so append (v, w)
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to C. Continuing in this manner, for each edge e appended to C, the condition that
deg−(x) = deg+(x) implies that there is some edge e′ ∈ E where the tail of e is the
head of e′ that can be appended to C. This process must terminate, as E is finite, but
it only terminates when the last edge appended to C is an edge with tail u and there
are no remaining edges in E − C with head u. Hence, when the process terminates, C
is a cycle.

If C contains all edges in E, then C is an Eulerian cycle. Suppose that there is some
e ∈ E−C. Since all vertices with non-zero degree belong to a single strongly connected
component, this implies that there must be some v ∈ V such that v is the head of e and
v is the tail of some e′ ∈ C. Shift the cycle C such that e′ is the last edge in C, and
hence v is the starting and endpoint of the cycle. Append e to C and repeat the process
above, which will then terminate when the last edge appended to C is an edge with tail
v and there are no remaining edges in E − C with head v. This means that all edges
incident on v are in C. As V is finite, this implies that this process can be repeated to
ensure that all edges of E are in C, and hence C will be an Eulerian cycle.

The corresponding result for the undirected case can be derived immediately from
this:

Corollary 3.1.4
A finite graph (V,E) has an Eulerian cycle if and only if all vertices v ∈ V with
non-zero degree belong to a single connected component and every vertex has even
degree.

Proof. Suppose that (V,E) has an Eulerian cycle. Then, every vertex with non-zero
degree must belong to a single strongly connected component, as if u, v ∈ V have
non-zero degree, then there must be a path between u and v in the Eulerian cycle.
Furthermore, for each v ∈ V , deg v ≡ 0 (mod 2) as the number of edges starting at v
must equal the number of edges leaving v for the Eulerian cycle to use every edge.

Suppose that all vertices v ∈ V with non-zero degree belong to a single connected
component and every vertex has even degree. For every pair of edges {u, v}, {w, v} ∈ E
incident on a vertex v, replace them with the directed edges (u, v) and (v, w). Since
every vertex has even degree, this gives a directed graph with deg−(v) = deg+(v).
Lemma 3.1.2 implies that the connected component in the underlying graph corresponds
to a strongly connected component in the directed graph. By Euler’s Theorem, this
directed graph therefore has an Eulerian cycle, and hence the underlying graph has an
Eulerian cycle.

3.2 Eulerian Cycles in Cayley Graphs

Euler’s Theorem can be used to characterise exactly which Cayley graphs of finite groups
admit Eulerian cycles.

Firstly, the following lemma is taken from [21, p. 133]. Here the assumption is made
that for vertices incident upon an undirected edge, the contribution to both the in-degree
and out-degree of that edge is one.

Lemma 3.2.1
For a group G and X ⊂ G where X is finite, for all vertices v ∈ G of Cay(G,X),
deg−(v) = deg+(v) = |X|.

Proof. Since for x, y ∈ X, vx = vy ⇐⇒ x = y by the cancellation law, by defini-
tion of the out-degree and in-degree, deg+(v) = |{vx : x ∈ X}| = |X| and deg−(v) =∣∣{vx−1 : x ∈ X

}∣∣ = |X|.
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I now propose and prove the following characterisation of the Cayley graphs of finite
groups with Eulerian cycles:

Theorem 3.2.2
For a finite group G and X ⊂ G, Cay(G,X) has an Eulerian cycle if and only if
G = 〈X〉 and X contains an even number of elements of order two.

Proof. By Euler’s Theorem, a directed graph has an Eulerian cycle if and only if the
in-degree and out-degree of every vertex is equal and all vertices with non-zero degree
belong to a single weakly connected component.

Since all vertices in a Cayley graph must be incident upon at least one edge by
definition, the graph must be weakly connected. By Proposition 2.3.4, Cay(G,X) is
weakly connected if and only if G = 〈X〉.

By Lemma 3.2.1, the in-degree and out-degree of every vertex in a Cayley graph is
equal, where any undirected edges are considered to each be contributing one to both
the in-degree and out-degree of vertices incident upon it. However, by definition of an
Eulerian cycle, each edge is used exactly once so an undirected edge cannot be used to
both enter and exit a vertex. In the context of Eulerian cycles, an undirected edge must
be considered as contributing one to exactly one of the in-degree and the out-degree of
vertices incident upon it. Hence, there must be an even number of undirected edges.
An edge generated by x ∈ X is undirected if and only if |x| = 2.

Hence, Cay(G,X) has an Eulerian cycle if and only if G = 〈X〉 and X contains an
even number of elements of order two.

Note that this shows that the existence of Eulerian cycles in Cayley graphs is only
dependent on the generating set and hence a group can have both Cayley graphs that
have Eulerian cycles and Cayley graphs that do not, as shown in Figure 9.

b

ab

a2ba3b

a4b

1

a

a2a3

a4

(a) Cay(D10, {a, b})

1
a2b

a2

a4b

a4

ab
a

a3b

a3

b

(b) Cay
(
D10,

{
a2b, b

})
Figure 9: Cayley graphs of D10 =

〈
a, b : a5 = 1, b2 = 1, ba = a−1b

〉
with respect to differ-

ent generating sets; Cay
(
D10,

{
a2b
})

clearly has an Eulerian cycle, but Cay(D10, {a, b})
does not.

3.3 Hamiltonian Cycles

After considering the question of the cycles in a graph that use every edge exactly once,
it is natural to consider the cycles in a graph that use every vertex exactly once. This
is the definition of a Hamiltonian cycle, as given in the combinatorics course [18].
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Definition 3.3.1 Hamiltonian Cycle
A Hamiltonian cycle in a finite graph is a cycle that uses every vertex exactly once.

Again, Hamiltonian cycles in directed graphs are defined in the same way, using the
stronger condition of the cycle being directed. A generalisation of this definition is that
of a Hamiltonian path; a path that uses every vertex exactly once.

Although the characterisation of which graphs contain Eulerian cycles was relatively
straightforward, there is no such result for Hamiltonian cycles. For both directed and
undirected graphs, the issue of finding a Hamiltonian cycle is NP-complete [7, p. 199].
However, there are many results guaranteeing the existence of Hamiltonian cycles in
undirected graphs satisfying certain conditions, usually relating to the degrees or degree
sums of vertices. Furthermore, graphs with Hamiltonian cycles can be built from other
graphs with Hamiltonian cycles using the Cartesian product, as stated in [5, pp. 51–52].

Theorem 3.3.2
If Γ = (V,E) and Γ′ = (V ′, E′) are graphs with Hamiltonian cycles, then Γ×Γ′ has
a Hamiltonian cycle.

Proof. Suppose that |V | = m and |V ′| = n. As Γ has a Hamiltonian cycle, it has the
cycle graph Cm on m vertices as a subgraph; similarly, Γ′ has the cycle graph on n
vertices Cn as a subgraph. This implies that Cm ×Cn is a spanning subgraph of Γ× Γ′

by definition of the Cartesian product.
Let Cm have vertex set {u1, . . . , um} and edges {ui, ui+1} for i ∈ {1, . . . ,m− 1}

and {um, u1}; similarly, let Cn have vertex set {v1, . . . , vn} and edges {vi, vi+1} for
i ∈ {1, . . . , n− 1} and {vn, v1}. If m and n are both odd, then the cycle defined by the
sequence of vertices

(u1, v1), (u2, v1), . . . , (um, v1), (um, v2), . . . , (u2, v2), (u2, v3), . . . ,

(u2, vn−1), (u2, vn), (um, vn), (u1, vn), (u1, vn−1), . . . , (u1, v1)

(as shown in Figure 10a) is a Hamiltonian cycle in Cm × Cn. If at least one of m and
n is even - suppose without loss of generality that n is even - then the cycle defined by
the sequence of vertices

(u1, v1), (u2, v1), . . . , (um, v1), (um, v2), . . . , (u1, v2), (u2, v3), . . . ,

(u1, vn−1), (u1, vn), (um, vn), . . . , (u1, vn), (u1, v1)

(as shown in Figure 10b) is a Hamiltonian cycle in Cm × Cn.
Hence, Cm×Cn has a Hamiltonian cycle, which is a Hamiltonian cycle in Γ×Γ′.

However, this result does not hold for directed graphs. It is clear from Figure 10
that the argument in the proof of Theorem 3.3.2 would not work in the directed case,
as adding the directions to Cm and Cn would cause the given edges to no longer form
a cycle. The following result from [12, pp. 138–140] characterises when the Cartesian
product of directed cycle graphs has a Hamiltonian cycle, using an intuitive application
of the additive group Z/mZ⊕Z/nZ, which is isomorphic to the direct product of cyclic
groups Cm × Cn.

Lemma 3.3.3
For directed cycle graphs Cm and Cn on m and n vertices respectively, if hcf(m,n) ≥
2 and there exists integers dm, dn > 0 such that dm + dn = hcf(m,n) and
hcf(m, dm) = hcf(n, dn) = 1, then Cm × Cn has a Hamiltonian cycle.
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(u1, v1) (u2, v1) (u3, v1) (um, v1)

(um, v2)(u3, v2)(u2, v2)(u1, v2)

(u1, v3) (u2, v3) (u3, v3) (um, v3)

(u1, vn) (u2, vn) (u3, vn) (um, vn)

(a) A Hamiltonian cycle in Cm × Cn when m
and n are odd.

. . .

. . .

. . .

. . .

. . .

...
...

...
...

(u1, v1) (u2, v1) (u3, v1) (um, v1)

(um, v2)(u3, v2)(u2, v2)(u1, v2)

(u1, v3) (u2, v3) (u3, v3) (um, v3)

(u1, vn−1) (u2, vn−1) (u3, vn−1) (um, vn−1)

(um, vn)(u3, vn)(u2, vn)(u1, vn)

(b) A Hamiltonian cycle in Cm×Cn when n is
even.

Figure 10: Demonstration of the construction of Hamiltonian cycles in Theorem 3.3.2.

Proof. Let V = {0, . . . ,m− 1} × {0, . . . , n− 1} be the vertex set of Cm × Cn and E
be the edge set. This provides a natural way viewing Cm × Cn as the additive group
Z/mZ ⊕ Z/nZ; there is an edge (u, v) ∈ E if and only if either v = u + (1, 0) or
v = u+ (0, 1).

Using the conditions given, a cycle (v1, v2), . . . , (vmn−1, vmn) can be defined in the
following way:

v1 = (0, 0)

v2 = (1, 0)

...

vdm+1 = (dm, 0)

vdm+2 = (dm, 1)

vdm+3 = (dm, 2)

...

vdm+dn−1 = (dm, dn − 2)

vhcf(m,n) = (dm, dn − 1)

vhcf(m,n)+1 = (dm, dn)

vhcf(m,n)+2 = (dm + 1, dn)

...

vhcf(m,n)+i = vi + (dm, dn)

...

vmn = (lcm(m,n)dm, lcm(m,n)dn − 1)
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= (0, n− 1)

It follows from this that
(
vi, vi+1 (mod mn)

)
∈ E and that vi 6= vj for every i, j ∈

{1, . . . ,mn} where i 6= j. Since Cm × Cn has mn vertices by definition, this cycle is a
Hamiltonian cycle.

Theorem 3.3.4
If Cm and Cn are directed cycle graphs on m and n vertices respectively, then Cm×
Cn has a Hamiltonian cycle if and only if hcf(m,n) ≥ 2 and there exists integers
dm, dn > 0 such that dm + dn = hcf(m,n) and hcf(m, dm) = hcf(n, dn) = 1.

Proof. By Lemma 3.3.3, the given conditions imply that Cm × Cn has a Hamiltonian
cycle and so it suffices to prove the opposite implication.

Again let V = {0, . . . ,m− 1} × {0, . . . , n− 1} be the vertex set of Cm × Cn and E
be the edge set.

Suppose that there is a Hamiltonian cycle (v1, v2), . . . , (vmn−1, vmn) in Cm ×Cn, so
the vi are unique for i ∈ {1, . . . ,mn}. Without loss of generality, let v1 = (0, 0). Let

V1 = {vi ∈ V : vi+1 = vi + (1, 0) (mod m)}
V2 = {vi ∈ V : vi+1 = vi + (0, 1) (mod n)}

so that V1, V2 6= ∅ and V1 ∪ V2 = V .
For vi ∈ V1, if vi + (1, n− 1) ∈ V2 with vj = vi + (1, n− 1), then i 6= j but

vi+1 = vi + (1, 0) = vi + (1, n) = vj+1. This contradicts the assumption that the vi
are unique and so vi + (1, n− 1) ∈ V1. Conversely, suppose that vi + (1, n− 1) ∈ V1
and vi ∈ V2, with vj = vi + (1, 0). If vj−1 ∈ V2, then vj = vj−1 + (0, 1) and so
vi+(1, n− 1) = vj−1, contradicting vi+(1, n− 1) ∈ V1, and if vj−1 ∈ V1, then vj−1 = vi,
contradicting vi ∈ V2. Hence, vi ∈ V1 if and only if vi + (1, n− 1) ∈ V1.

If H = 〈(1, n− 1)〉 ≤ Z/mZ⊕Z/nZ, then |H| = lcm(m,n) = mn
hcf(m,n) . Since vi ∈ V1

if and only if vi+ (1, n− 1) ∈ V1, it follows that V1 and V2 are each the union of distinct
cosets of H in Z/mZ⊕Z/nZ. Since cosets are disjoint, V1∩V2 = ∅ and so hcf(m,n) ≥ 2.

For each vi ∈ V , there is some a ∈ {0, . . . ,m− 1} and b ∈ {0, . . . , n− 1} such that
a + b = hcf(m,n) and vi+hcf(m,n) = vi + (a, b). Let K = {(a, b) : a+ b = hcf(m,n)}.
For any (a, b) ∈ K, (a, b) = (hcf(m,n), 0) − b(1, n− 1) and so to show that K ⊂ H, it
suffices to show that (hcf(m,n), 0) ∈ K. By Bézout’s lemma, there exists some p, q ∈ Z
such that pm+ qn = hcf(m,n). Then,

(hcf(m,n), 0) = (hcf(m,n)− pm, qn(n− 1))

= (qn, qn(n− 1))

= qn(1, n− 1)

so (hcf(m,n), 0) ∈ H. This implies that vi ∈ V1 if and only if vi+hcf(m,n) ∈ V1. If
v1+hcf(m,n) = (dm, dn) = v1 + (dm, dn), then dm + dn = hcf(m,n) with dm, dn > 0.

Furthermore, by applying this repeatedly, for k ∈ Z, v1+k hcf(m,n) = v1 + (kdm, kdn).
Let k = |〈(dm, dn)〉|. This implies that v1 + (kdm, kdn) = v1 by definition of the order.
Since there are hcf(m,n) vertices between vi and vi+hcf(m,n) in the Hamiltonian cycle,
k hcf(m,n) = mn and so k = mn

hcf(m,n) = lcm(m,n). If dm has order km in Z/mZ and

dn has order kn in Z/nZ, then k = lcm(km, kn), so lcm(m,n) = lcm(km, kn).
Suppose there is some prime p such that p | dm and p | m. If p | dn, then p | hcf(m,n)

since dm + dn = hcf(m,n), and so p | n. By definition of the order, km is the smallest
integer such that m | kmdm and similarly kn is the smallest integer such that n | kndn.
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This implies that km | mp and kn | np as dm

(
m
p

)
=
(
dm
p

)
m and dn

(
n
p

)
=
(
dn
p

)
n. This

implies that

lcm(km, kn) ≤ lcm

(
m

p
,
n

p

)
=

mn

p hcf(m,n)

<
mn

hcf(m,n)

= lcm(m,n)

which is a contradiction. Hence, p - dn. This implies that p - hcf(m,n) since dm + dn =
hcf(m,n), and so p - n. By a similar argument as above, this implies that km | mp and

kn | n and so

lcm(km, kn) ≤ lcm

(
m

p
, n

)
=

mn

phcf(m,n)

<
mn

hcf(m,n)

= lcm(m,n)

which is again a contradiction. This implies that hcf(m, dm) = 1, and hcf(n, dn) = 1 by
the same argument.

Hence, if Cm × Cn has a Hamiltonian cycle, then hcf(m,n) ≥ 2 and there exists
integers dm, dn > 0 such that dm+dn = hcf(m,n) and hcf(m, dm) = hcf(n, dn) = 1.

Corollary 3.3.5
For directed graphs Γ = (V,E) and Γ = (V ′, E′) with Hamiltonian cycles where
|V | = m and |V ′| = n, if hcf(m,n) ≥ 2 and there exists integers dm, dn > 0 such
that dm + dn = hcf(m,n) and hcf(m, dm) = hcf(n, dn) = 1, then Γ × Γ′ has a
Hamiltonian cycle.

Proof. As Γ has a Hamiltonian cycle, it has the directed cycle graph Cm on m vertices
as a spanning subgraph; similarly, Γ′ has the directed cycle graph on n vertices Cn as
a spanning subgraph. This implies that Cm × Cn is a spanning subgraph of Γ × Γ′

by definition of the Cartesian product. By Theorem 3.3.4, this spanning subgraph is a
Hamiltonian cycle.

3.4 Hamiltonian Paths and Cycles in Cayley Graphs

Although Hamiltonian cycles in Cayley graphs have not been studied in as great detail
as their underlying counterparts, progress has been made on determining which Cayley
graphs of certain families of finite groups have Hamiltonian cycles. In particular, research
has focused on which groups have a minimal generating set with respect to which its
Cayley graph has a Hamiltonian cycle. Note that if a Cayley graph with respect to a
minimal generating set X has a Hamiltonian cycle, then the Cayley graph with respect
to any generating set Y ⊃ X has a Hamiltonian cycle, so research has focused on Cayley
graphs with respect to minimal generating sets.

For example, in the following result adapted from [13, p. 67], this is shown for abelian
groups. This uses a special case of Theorem 3.3.4, stated as a lemma below.
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Lemma 3.4.1
For integers m,n ≥ 3 such that n | m, if Cm and Cn are directed cycle graphs on m
and n vertices respectively, then Cm × Cn has a Hamiltonian cycle.

Proof. By Theorem 3.3.4, Cm×Cn has a Hamiltonian cycle if and only if hcf(m,n) ≥ 2
and there exists integers dm, dn > 0 such that dm + dn = hcf(m,n) and hcf(m, dm) =
hcf(n, dn) = 1.

When n | m, hcf(m,n) = n ≥ 3. If dm = 1 and dn = n − 1, then dm + dn = 1 and
hcf(m, dm) = hcf(n, dn) = 1. Hence, Cm × Cn has a Hamiltonian cycle.

Theorem 3.4.2
If G is a finite abelian group, then there is a minimal generating set X ⊂ G such
that Cay(G,X) has a Hamiltonian cycle.

Proof. By the fundamental theorem of finite abelian groups, G ∼=
⊕k

i=1 Z/diZ where
di+1 | di for i ∈ {1, . . . , k − 1} such that |G| = d1 . . . dk. If k = 1, then G is cyclic and so
Cay(G, {1}), is a cycle graph and so has a Hamiltonian cycle. Suppose the result holds
for all k < n.

When k = n, let G′ ∼=
⊕n−1

i=1 Z/diZ. As G′ ⊕ {0} ≤ G, by the inductive hypothesis,
there is a minimal generating set X ′ ⊂ G′ such that Cay(G′, X ′) has a Hamiltonian
cycle. It follows from the minimality of X ′ that X = (X ′ × {0}) ∪ {(0, . . . , 0, 1)} is a
minimal generating set of G.

As Cay(G′, X ′) has a Hamiltonian cycle, it has the directed cycle graph Cd1...dn−1

as a spanning subgraph. The Cayley graph Cay(Z/dnZ, {{1}}) is the directed cycle
graph Cdn . By Proposition 2.3.10, Cay(G,X) ∼= Cay(G′, X ′)× Cay(Z/dnZ, {{1}}) and
so Cd1...dn−1

×Cdn is a spanning subgraph of Cay(G,X). By Lemma 3.4.1, as dn | dn−1,
dn | d1 . . . dn−1, Cd1...dn−1

× Cdn has a Hamiltonian cycle and so Cay(G,X) has a
Hamiltonian cycle.

Hence, by induction, every finite abelian group has a minimal generating set with
respect to which its Cayley graph has a Hamiltonian cycle.

A similar result for the dihedral groups can be proven directly from their standard
presentations.

Proposition 3.4.3
For all n ≥ 3, the dihedral group D2n has a minimal generating set X ⊂ D2n such
that Cay(D2n, X) has a Hamiltonian cycle.

Proof. A standard presentation of D2n is
〈
a, b | an = 1, b2 = 1, ba = a−1b

〉
. Clearly X =

{a, b} is a minimal generating set, as D2n is not abelian and hence not cyclic. A cycle
(v1, v2), . . . , (v2n−1, v2n) can be defined as follows:

v1 = 1

v2 = a

v3 = a2

...

vn = an−1

vn+1 = an−1b

vn+2 = an−1ba

= an−2b
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...

v2n−1 = ab

v2n = b

It follows from the presentation that
(
vi, vi+1 (mod 2n)

)
is an edge in Cay(D2n, X), as

(v1, v2), . . . , (vn−1, vn) and (vn+1, vn+2), . . . , (v2n−1, v2n) are each generated by a and
{vn, vn+1} and {v1, v2n} are generated by b and so are undirected. Furthermore, vi 6= vj
for every i, j ∈ {1, . . . ,mn} where i 6= j. Hence, (v1, v2), . . . , (v2n−1, v2n) is a Hamilto-
nian cycle in Cay(D2n, X).

The weaker condition of which Cayley graphs contain a Hamiltonian path has also
been considered. For example, the following theorem, taken from [19, pp. 7–8], shows
that every Cayley graph of every finite Dedekind group has a Hamiltonian path.9

Definition 3.4.4 Dedekind Group
A Dedekind group is a group where every subgroup is normal.

Lemma 3.4.5
If G is a group with N E G and there is a surjective homomorphism φ : G → H,
then φ(N) E H.

Proof. Since φ is a surjective homomorphism, for every h ∈ H, there exists g ∈ G such
that f(g) = h. This implies that for every h ∈ H and n ∈ N ,

hφ(n)h−1 = φ(g)φ(n)φ(g)
−1

= φ(g)φ(n)φ
(
g−1

)
= φ

(
gng−1

)
Since N is normal, gng−1 ∈ N and so φ

(
gng−1

)
∈ φ(N). This implies that φ(N) is

normal.

Theorem 3.4.6
If G is a Dedekind group and X ⊂ G is a minimal generating set of G, then
Cay(G,X) has a Hamiltonian path.

Proof. If |X| = 1, then G is a cyclic group and so Cay(G,X) is a directed cycle graph;
in particular, it has a Hamiltonian cycle.

Suppose that the result holds for all minimal generating sets X ′ with |X ′| < |X|. Let
Y = X−{x} for some x ∈ X. By Lemma 3.4.5, any quotient group of a Dedekind group
is Dedekind, using the canonical surjection between a group and its quotient group, so
H = G/〈x〉 is Dedekind. Let φ : Y → H be the coset map φ(y) = y〈x〉. Since Y ∪ {x}
generates G, φ(Y ) generates H. As |Y | < |X|, this implies that Cay(H,φ(Y )) has a
Hamiltonian path by the inductive hypothesis. If (y1〈x〉, y2〈x〉), . . . , (yn−1〈x〉, yn〈x〉) is
a Hamiltonian path in H and x has order k, then a Hamiltonian path can be defined in
G starting at 1 by a sequence of edges

x, . . . , x︸ ︷︷ ︸
k−1 times

, y1, x, . . . , x︸ ︷︷ ︸
k−1 times

, y2, . . . , x, . . . , x︸ ︷︷ ︸
k−1 times

, yn, x, . . . , x︸ ︷︷ ︸
k−1 times

9Note that every abelian group is Dedekind, but the converse does not hold. Non-abelian Dedekind
groups are often called Hamiltonian, but this terminology will be avoided in this essay to avoid confusion
with Hamiltonian paths and cycles.
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This is indeed a Hamiltonian path, as each subsequence of repetitions of x generates a
different coset of 〈x〉 and cosets are disjoint and partition the group. Hence, by induction,
every Dedekind group has a Hamiltonian path in any Cayley graph with respect to a
minimal generating set.

For example, Figure 11 gives an example of this construction in the smallest non-
abelian Dedekind group, the quaternion group Q8, which is the more common name for
the dicyclic group of order 8.

1 a

a2a3

b

aba2b

a3b

(a) Cay(Q8, {a, b})

1 a

a2a3

b

aba2b

a3b

(b) A Hamiltonian path in Cay(Q8, {a, b}).

Figure 11: A demonstration using Cay(Q8, {a, b}) of the method of constructing a Hamil-
tonian path in a Cayley graph of a Dedekind group given in the proof of Theorem 3.4.6.

A similar result can be proven for certain groups with index 2 subgroups, as given
in [23, pp. 102–103], which in particular shows that every Cayley graph of a dihedral
group has a Hamiltonian path.

Proposition 3.4.7
For a group G with a minimal generating set X ⊂ G, if there is some N ≤ G such
that [G : N ] = 2 and every subgroup of N is normal in G, then Cay(G,X) has a
Hamiltonian path.

Proof. The proof will proceed by induction on n = |G|, showing that there is a Hamilto-
nian path (v1, v2), . . . , (vn−1, vn) such that v1 = 1 and vn /∈ N . If |G| = 2, then {1} E G
with [G : {1}] = 2, and clearly the result holds.

Suppose that the result holds for all groups G′ with |G′| < |G|. If X is a minimal
generating set of G, then let H = 〈X − {x}〉 for some x ∈ X − N , with |H| = m. If
H ≤ N , then H E G must be a Dedekind group by the hypothesis and by Theorem 3.4.6,
H has a Hamiltonian path. If e1, e2, . . . , em−1 ∈ X − {x} is the sequence of edges that
generate the path, so vi+1 = viei for each i ∈ {1, . . . ,m− 1}, then

e1, e2, . . . , em−1, x, e1, e2, . . . , em−1︸ ︷︷ ︸
[G:H]−1 times

is a Hamiltonian path in Cay(G,X). This is because the sequence moves through all

the elements of the cosets H, vmxH, . . . , (vmx)
[G:H]−1

H. If (vmx)
i
H = (vmx)

j
H for

i, j ∈ {0, . . . , [G : H]− 1}, with i ≤ j, then (vmx)
j−i ∈ H. Since H E G and vm ∈ H,

vmx = xh for some h ∈ H and, by applying this inductively, (vmx)
j−i

= xj−ih̃ for some

h̃ ∈ H. Since (vmx)
j−i ∈ H, this implies that xj−i ∈ H. As G = 〈x,H〉, G/H = 〈xH〉

and so |x| = [G : H]. As xj−i ∈ H, xj−iH = H and so [G : H] | j − i, meaning that
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i = j and the cosets are distinct. This implies that this defines a Hamiltonian path in
Cay(G,X).

If H 6≤ N , then as [H : H ∩N ] ≤ [G : N ] = 2, [H : H ∩N ] = 2 and so by the induc-
tive hypothesis, Cay(H,X − {x}) has a Hamiltonian path (v1, v2), . . . , (vm−1, vm) where
v1 = 1 and vm /∈ N . By Corollary 2.3.7, each connected component of Cay(G,X − {x})
is a coset of H in G and so has a copy of this Hamiltonian path. If e1, e2, . . . , em−1 ∈
X − {x} is the sequence of edges that generate the path, so vi+1 = viei for each
i ∈ {1, . . . ,m− 1}, then it suffices to show that

e1, e2, . . . , em−1, x, e1, e2, . . . , em−1︸ ︷︷ ︸
[G:H]−1 times

is a Hamiltonian path in Cay(G,X). Note that vm = e1 . . . em−1 by definition. To prove

that the vertices in this path are distinct, suppose that (vmx)
k
e1 . . . , ej = e1 . . . el for

some k ∈ {0, . . . , [G : H]− 1} and j, l ∈ {0, . . . ,m− 1}.
For any g, h /∈ N , gh ∈ N as g and h, and hence g−1, must be in the same coset of

N in G, and hN = g−1N if and only if gh ∈ N . Using this, if K =
〈
H ∩N, vmx, x2

〉
,

then K ≤ N since vmx, x
2 ∈ N . As G = 〈H,x〉 = 〈H ∩N, vm, x〉 = 〈K,x〉, [G : K] = 2

and so N = K =
〈
H ∩N, vmx, x2

〉
. Furthermore, since vm ∈ H, v2m ∈ H ∩N and hence

v−2m ∈ H ∩N .
Since every subgroup of N is normal in G, 〈vmx〉 E G and so xvm, x

2vmx
−1 ∈ 〈vmx〉

by conjugating by x and x2 respectively. If xvm = (vmx)
r

and x2vmx
−1 = (vmx)

s
for

some r, s ∈ N, then x2vm = (vmx)
s
x and so x2v2m = (vmx)

s
(vmx)

r
= (vmx)

r+s
, which

implies that x2v2m ∈ 〈vmx〉. Since v−2m ∈ H ∩N and x2v2m ∈ 〈vmx〉, N = 〈H ∩N, vmx〉.
Since (vmx)

k ∈ H by hypothesis and vmx ∈ N , (vmx)
k ∈ H ∩ N . As N =

〈H ∩N, vmx〉 and H ∩ N E N , N/(H ∩N) = 〈vmx(H ∩N)〉 and so either k = 0
or [N : H ∩N ] | k. However, as

[G : H ∩N ] = [G : H][H : H ∩N ]

= 2[G : H]

[G : H ∩N ] = [G : N ][N : H ∩N ]

= 2[N : H ∩N ]

it must be that [N : H ∩N ] = [G : H]. Since k ∈ {0, . . . , [G : H]− 1}, this implies that
k = 0 and hence that j = l. This shows that each vertex in the given path is distinct
and so it defines a Hamiltonian path in Cay(G,X).

Lemma 3.4.8
If G is a group and N E G is cyclic, then every H ≤ N is normal in G.

Proof. Since N = 〈n〉, H =
〈
nk
〉

for some k ∈ N. For any g ∈ G, gng−1 = ni for some
i ∈ N by definition of N being normal in G. As

gnkg−1 =
(
gng−1

)k
=
(
ni
)k

=
(
nk
)i

gnkg−1 ∈ H and so H E G.
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Corollary 3.4.9
For all n ≥ 3, the Cayley graph Cay(D2n, X) has a Hamiltonian path for any minimal
generating set X ⊂ D2n.

Proof. Since D2n has a cyclic subgroup of index 2, namely N = 〈a〉 where D2n =〈
a, b | a2n = 1, an = b2, ba = a−1b

〉
, and by Lemma 3.4.8 every subgroup of N is normal

in G, Cay(D2n, X) has a Hamiltonian path.

Corollary 3.4.10
For all n ≥ 2, the Cayley graph Cay(Dic4n, X) has a Hamiltonian path for any
minimal generating set X ⊂ Dic4n.

Proof. Since Dic4n has a cyclic subgroup of index 2, namely N = 〈a〉 where Dic4n =〈
a, b | an = 1, b2 = 1, ba = a−1b

〉
, and by Lemma 3.4.8 every subgroup of N is normal in

G, Cay(Dic4n, X) has a Hamiltonian path.

These results raise the question of whether there exists families of groups for which
all Cayley graphs have Hamiltonian cycles, just as there are for Hamiltonian paths.
However, knowing which groups contain a Hamiltonian path in all their Cayley graphs
does not greatly simplify the issue of finding a Hamiltonian cycle; for example, it has
been conjectured that every Cayley graph of a dihedral group contains a Hamiltonian
cycle but there is not yet a proof of this even for three-element generating sets [22,
p. 296].

3.5 Hamiltonian Cycles in the Underlying Graphs of Cayley
Graphs

Much of the research surrounding Hamiltonian cycles in Cayley graphs has focused on
an outstanding problem in graph theory known as the Lovász conjecture [1, p. 25].

Conjecture 3.5.1 Original Lovász Conjecture
Every connected vertex transitive graph on at least three vertices contains a Hamil-
tonian cycle.

There have been some connected vertex transitive graphs for which the original
Lovász conjecture does not hold, such as the Petersen graph, although these all have
Hamiltonian paths. However, none of the counterexamples currently known are the
underlying graphs to any Cayley graphs, leading to the following weaker conjecture [1,
p. 25].

Conjecture 3.5.2 Weaker Lovász Conjecture
The underlying graph of any finite connected Cayley graph on at least three vertices
contains a Hamiltonian cycle.

Although it followed from Theorem 3.2.2 that a Cayley graph has an Eulerian cycle if
and only if its underlying graph has an Eulerian cycle, this does not hold for Hamiltonian
cycles in Cayley graphs. Clearly a Cayley graph having a Hamiltonian cycle is a stronger
condition than its underlying graph having a Hamiltonian cycle.

For example, the Cayley graph Cay
(
C12,

{
a3, a4

})
has not got any Hamiltonian cy-

cles; this is shown by contradiction. If Cay
(
C12,

{
a3, a4

})
had a Hamiltonian cycle with

an edge
(
ai (mod 12), ai+4 (mod 12)

)
in the cycle, then

(
ai+1 (mod 12), ai+4 (mod 12)

)
cannot

also be an edge in the cycle. This means that
(
ai+1 (mod 12), ai+5 (mod 12)

)
must be the
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edge from ai+1 (mod 12) instead. This implies that every edge in the Hamiltonian cycle
must be generated by a4 by applying this argument inductively, which is a contradiction
since these edges generate four cycles of length three in Cay

(
C12,

{
a3, a4

})
, as seen in

Figure 12. By the same argument, if a Hamiltonian cycle in Cay
(
C12,

{
a3, a4

})
has an

edge generated by a3, then all edges in the cycle must be generated by a3, producing a
contradiction as these edges generate three cycles of length four in Cay

(
C12,

{
a3, a4

})
,

as seen in Figure 12. However, the underlying graph of Cay
(
C12,

{
a3, a4

})
does contain

a Hamiltonian cycle, which is highlighted in Figure 12.

1

a3

a6

a9

a

a2

a4

a5

a7

a8

a10

a11

(a) Cay
(
C12,

{
a3, a4

})

1

a3

a6

a9

a

a2

a4

a5

a7

a8

a10

a11

(b) A Hamiltonian cycle in the underlying
graph of Cay

(
C12,

{
a3, a4

})
.

Figure 12: A demonstration using Cay
(
C12,

{
a3, a4

})
that Cayley graphs with Hamil-

tonian cycles in their underlying graphs do not necessarily have Hamiltonian cycles.

Although the weaker Lovász conjecture is not true for Cayley graphs when considered
as directed graphs, no counterexamples have yet been found when considering their
underlying graphs. However, some results proving the conjecture for certain families of
finite groups are known. For example, a stronger statement than Theorem 3.4.6 holds
for the underlying graphs of abelian groups; as given in [19, p. 9], the weaker Lovász
conjecture holds for all underlying graphs of Cayley graphs of abelian groups.

Theorem 3.5.3
If G is a finite abelian group and X ⊂ G is a minimal generating set of G, then the
underlying graph of Cay(G,X) has a Hamiltonian cycle.

One of the strongest results regarding the weaker Lovász conjecture for non-abelian
groups regards those with cyclic p-group commutator subgroups.

Theorem 3.5.4
If G is a finite group such that its commutator subgroup [G,G] ∼= Cpn for some prime
p and n ∈ N and X ⊂ G is a minimal generating set of G, then the underlying graph
of Cay(G,X) has a Hamiltonian cycle.

Although the proof will be omitted from this essay, a sketch proof can be found in [22,
p. 295]. This shows that, for example, D2pk for any prime p and k ∈ N has a Hamiltonian
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cycle in the underlying graph of every Cayley graph, since [D2n, D2n] =
〈
x2
〉

and

∣∣x2∣∣ =

{
n
2 n is even

n n is odd

where D2n =
〈
x, y | xn = 1, y2 = 1, yx = x−1y

〉
.

4 Conclusion

Cayley graphs provide an intriguing alternative perspective of the groups they represent,
allowing their properties to be viewed in a graph-theoretic rather than purely algebraic
way. Although they are constructed in a fairly intuitive way, it is clear that they provide
a significant amount of insight into important questions in both graph theory and group
theory. In this essay, we have explored many key properties of Cayley graphs and their
cycles, including their importance in studying the Lovász conjecture, a famous open
problem in graph theory.

Although this essay has provided an introduction to the study of Cayley graphs,
they are related to many problems in wide-ranging areas of mathematics, computer sci-
ence and even molecular biology [14]. Furthermore, here the focus has been primarily
on Cayley graphs of finite groups, but the same constructions can be made for infinite
groups. The construction of infinite Cayley graphs is related to several important prob-
lems, such as the solvability of the word problem, which is the question of whether two
given words in the generators represent the identity element [15, pp. 109–113].
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